Minggu, 28 November 2010

Tugas Matematika Ekonomi


1.       A = {2,3,5,7}, B = {3,4,5,8,10}, dan C = {0,1,2,3}.
Sifat komutatif irisan dan gabungan ?
Jawab : - irisan :                AnB = BnA
                                {3,5} = {3,5}
                - gabungan : AuB = BuA
                                        {2,3,4,5,7,8,10} = {2,3,4,5,7,8,10}

2.       Jika C = {x / x < 5 dan x € bil cacah}, tentukan anggota dari C ?
Jawab : C = {0,1,2,3,4}

3.       A = {2,3,5,7}, B = {3,4,5,8,10}, dan C = {0,1,2,3}.
Sifat asosiatif irisan dan gabungan ?
Jawab : - irisan : An(BnC) = (AnB)nC
                                 An(BnC) = {2,3,5,7} n {3} Jadi {3}
                                 (AnB)nC = {3,5} n {0,1,2,3} Jadi {3}
                - gabungan : Au(BuC) = (AuB)uC
                                         Au(BuC) = {2,3,5,7} u {0,1,2,3,4,5,8,10} Jadi {0,1,2,3,4,5,7,8,10}
                                         (AuB)uC = {2,3,4,5,7,8,10} u {0,1,2,3} Jadi {0,1,2,3,4,5,7,8,10}
               
4.       A = {2,3,5,7}, B = {3,4,5,8,10}, dan C = {0,1,2,3}.
Sifat distributive irisan terhadap gabungan dan gabungan terhadap irisan ?
Jawab : - irisan terhadap gabungan : An(BuC) = (AnB) u (AnC)
                                An(BuC) = {2,3,5,7} n {0,1,2,3,4,5,8,10} Jadi {2,3,5}
                                (AnB) u (AnC) = {3,5} u {2,3} Jadi {2,3,5}
                - gabungan terhadap irisan : Au(BnC) = (AuB) n (AuC)
                                Au(BnC) = {2,3,5,7} u {3} Jadi {2,3,5,7}
                                (AuB) n (AuC) = {2,3,4,5,7,8,10} n {0,1,2,3,5,7} Jadi {2,3,5,7}

5.       Jika A = {m,e,r,a,h}, B = {r,a,t,i,h}. Tentukan AuB ?
Jawab : AuB = {m,e,r,a,h,i,t}

6.       Fungsi permintaan akan suatu barang ditunjukkan oleh persamaan P = 12 – Q, sedangkan persamaan penawarannya P = 3 = 0,5 Q. Berapa harga keseimbangan pasar ?
Jawab : Permintaan : P = 12 – Q                 Q = 12 – P
                                          P = 3 + 0,5 Q             Q = -6 + 2P

                Qd          = Qs                                       Qd = 12 - P
                12 – P    = -6 + 2P                                     = 12 – 6
                -3P         = -18                                            = 6
                P             = 6
                Kesimbangan pasar (6,6)

7.       Andy menabung di bank, uang Andy saat ini Rp. 1.000.000,-. Berapa jumlah uang Andy 5 tahun kemudian, jika bunga yang diberikan bank 7,5 % ?
Jawab : Ao = 1.000.000
                n    = 5
                i     = 7,5 %
                A₅  = 1.000.000 x (1 + 7,5 %)⁵
                      = 1.000.000 x (1,435)
                      = 1.435.000

8.       Andy menabung di bank, uang Andy saat ini Rp. 1.000.000,-. Berapa tingakt bunga yang diberikan bank, jika uang Andy 5 tahun yang lalu Rp. 800.000,- ?
Jawab : An  = Ao x (1 + i )ⁿ
                1.000.000 = 800.000 x (1 + i )⁵
                (1 + i )⁵      = 1.000.000
                                        800.000
                                    = 1,25
                (1 + i )       = (1,25)⅕
                                    = 1,045
                                i   = 1,045 – 1
                                    = 0,045
                Bunga      =   4,5 %

9.       Jumlah barang yang diminta pada harga Rp. 1.000,- sebanyak 100 unit, jika harga dinaikkan menjadi Rp. 1.250,- sebanyak 75 unit. Tentukan fungsi permintaan ?
Jawab : Misal : P₁ = 1.000               Q₁ = 100
                             P₂ = 1.250               Q₂ = 75

                m = P₂ - P₁  = 250  = -10
                        Q₂ - Q₁ = -25 
                P - P₁ = m (Q - Q₁)
                P – 1000 = -10 (Q – 100)
                P – 1000 = -10 Q + 1.000
                P = -10 Q + 1.000 + 1.000
                P = -10 Q + 2.000

10.   Nilai x memenuhi persamaan 5x – 4 = 3x + 2 adalah …..
Jawab : 5x – 4 = 3x + 2
                5x – 3x = 2 + 4
                       2x  = 6
                          x = 3


11.   Jika log 5 = 0,699 dan log 3 = 0,477 , maka log 150 = ………….
Jawab : log 150 = log (5 x 3 x 10)
                                  = log 5 + log 3 + log 10
                                  = 0,699 + 0,477 + 1
                                  = 2,176

  1. Nilai dari 5 log 10 + 5 log 50 – 5 log 4 = …………
Jawab : 5 log (10 x 50)
                                     4
             5 log (500)
                           4
             5 log 125 = y
                 125          = 5 y
              5 ³           = 5 y
                  y                 = 3

                 
  1. Nilai x yang memenuhi persamaan 2 log (x – 2) + 2 log (x – 3) = 2 log 3 . 3 log 2 adalah …………
Jawab : 2 log (x – 2) (x – 3) = 2 log 2
                          (x – 2) (x – 3) = 2
                          x ² - 5 x + 6 – 2 = 0
                          (x – 1) = 0   (x – 4) = 0
                           x – 1 = 0      x – 4 = 0
                             x = 1     /     x = 4        

  1. Jika a log 81 – 2a log 27 + a log 243 = 6, maka nilai a = …………..
Jawab : a log 81 – 2a log 27 + a log 243 = 6
                 a log 81 – a log 27 ² + a log 243 = 6
                 a log (81 . 243) = 6
                          27²
                 a log (3⁴   x 3⁵)  = 6
                            3³·² 
                 a log (3 ⁽⁴⁻⁶⁺⁵⁾)  = 6
                 a log 3³   = 6
                                 a⁶     = 3³
                                       a      = 3½     

  1. Jika log 2 = p dan log 3 = q, maka log 12 = ………….
Jawab : log 12 = log (2² x 3)
                             = log 2² + log 3
                             = 2p     +     q


  1. Nilai dari 2 log16 – 3 log 27 + 5 log 1 = …………………
Jawab : 2 log 16 – 3 log 27 + 5 log 1
              =   4       -     3          +      0
                 =       1


  1. Nilai x dari log (x + 1) = 1 + log x adalah …………….
Jawab : log (x + 1) = 1 + log x
                 log (x + 1) = log 10 + log x
                 log (x + 1) = log (10 . x)
                         x + 1  =  10 x
                     x – 10 x =  -1
                        -9 x     =  -1
                          x     =   1/9

  1. Nilai dari log 2 √2 + log √3 + log 18 = ……………………
                                   log 6
Jawab : log 2 √2 + log √3 + log 18
                                     log 6
                = log (2 √2 . √3 . 18)
                                log 6
                = log (36 √6)
                        log 6
                = log (6² . 6½)
         log 6
= log (6²⁺¹ ²)
        log 6
= log 6⁵ ²
     log 6
= 5/2 log 6
      log 6
= 5/2

  1. Jika log x² - log x + log √x = 6, maka x = ………………….
Jawab : log x² - log x + log √x = 6
                     log (x² . x ¹ ²)           = 6
                                  x
                     log (x ⁽²⁺¹ ²⁻¹⁾)          = 6
                     log . x³ ²                   = 6
                        10⁶ . x³ ²               = 0     
                                         x           = 10 . ⁶/₃ ₂
                                            x           = 10⁶ · ² ³
                                            x           = 10⁴
                                            x           = 10.000 

  1. Nilai dari 2 log 3 . 3 log 5 . 5 log 6 . 6 log 8 = …………....
Jawab : 2 log 3 . 3 log 5 . 5 log 6 . 6 log 8
                = 2 log 5 . 5 log 8
                = 2 log 8
                = 3

  1. Jika 4 log 5 = a, maka 16 log √5 = ………….
Jawab : 16 log √5
                = 4² log 5¹ ²
                = ½   .  4 log 5
                 2
                = ½ . ½ . a
                = ¼ a

  1. Nilai 2 log 40 – 2 log 5 + 2 log 4 = …………
Jawab : 2 log 40 – 2 log 5 + 2 log 4
                = 2 log (40 . 4)
                                     5
                = 2 log 160
                                  5
                = 2 log 32
                = 5

23.   Tentukan persamaan garis yang melalui titik P (5, -3) dan Q (-1, -4)
Jawab : m = y₂ - y₁
                         x₂ - x₁
                 m = -4 – (-3) = -1 = 1/6
                         -1 – 5        -6
                 y – y₁ = m (x - x₁)
                 y – (-4) = 1/6 (x – (-1))
                 y = 1/6x + 1/6 - 4
                 y = 1/6x – 23/6
                 6y = x – 23
                x = 6y + 23           y = -23/6
                x = 23                    y = -3,83

  1. Harga 5 baju Rp. 50.000,- dan harga 3 baju Rp. 25.000,-. Berapakah harga 10 baju ?
Jawab : x  = baju               y  = harga
 x₁ = 5                    y₁ = 50.000
 x₂ = 3                    y₂ = 25.000

m = - 25.000 = 12.500
                                            - 2
                                y - y₁ = m (x - x₁)
                                y – 50.000 = 12.500 (x – 5)
                                y = 12.500x – 62.500 + 50.000
                                y = 12.500x – 12.500
                                10 baju = 12.500 (10) – 12.500
                                                 = 125.000 – 12.500
                                                 = 112.500

  1. Tentukan persamaan garis yang melalui titik A (5, -4) dan B (-5, 1)
Jawab : m = y₂ - y₁
                         x₂ - x₁
                 m = 1 + 4  =  = -1/2
                         -5 - 5   -10
                 y – y₁ = m (x - x₁)
                 y – (-4) = -1/2 (x - 5)
                 y = -1/2x + 5/2 - 4
                 y = -1/2x – 3/2
                 2y = -x – 3
                 x = -2y – 3           y = -3/2
                 x = -3                    y = -1,5

  1. Harga 15 buku Rp. 35.000,- dan harga 8 buku Rp. 14.000,-. Berapakah harga 13 baju ?
Jawab : x  = buku              y  = harga
 x₁ = 15 y₁ = 35.000
 x₂ = 8                    y₂ = 14.000

m = - 21.000 = 3.000
                                            - 7
                                y - y₁ = m (x - x₁)
                                y – 35.000 = 3.000 (x – 15)
                                y = 3.000x – 45.000 + 35.000
                                y = 3.000x – 10.000
                                8 buku = 3.000 (13) – 10.000
                                                 = 39.000 – 10.000
                                                 = 29.000

  1. Tentukan persamaan garis yang melalui titik R (-2, -3) dan S (-3, 6)
Jawab : m = y₂ - y₁
                         x₂ - x₁
                 m = 6 + 3  = 9  = -9
                         -3 + 2   -1
                 y – y₁ = m (x - x₁)
                 y – (-3) = -9 (x – (-2))
                 y = -9x - 18 - 3
                 y = -9x - 21
                9x + 21 = 0
                9x = -21
                  x = -21/9
                  x =  -2,3              y = -21     

  1. Harga 2 kg telur Rp. 45.000,- dan harga 6 kg telur Rp. 105.000,-. Berapakah harga 1 kg telur?
Jawab : x  = telur              y  = harga
 x₁ = 2                    y₁ = 45.000
 x₂ = 6                    y₂ = 105.000

m = 60.000 = 15.000
                                            4
                                y - y₁ = m (x - x₁)
                                y – 45.000 = 15.000 (x – 2)
                                y = 15.000x – 30.000 + 45.000
                                y = 15.000x + 15.000
                                1 kg telur = 15.000 (1) + 15.000
                                                     = 30.000

  1. Tentukan persamaan garis yang melalui titik K (-6, 1) dan L (5, 2)
Jawab : m = y₂ - y₁
                         x₂ - x₁
                 m = 2 - 1  = 1  
                         5 + 6    11
                 y – y₁ = m (x - x₁)
                 y – 1 = 1/11 (x + 6)
                 y = 1/11x + 6/11 + 1
                 y = 1/11x + 17/11
                11y = x + 17
                x = 11y - 17                          y = 17/11
                x = -17                                   y = 1,55

  1. Harga 7 penghapus Rp. 14.000,- dan harga 13 buku Rp. 38.000,-. Berapakah harga 25 penghapus ?
Jawab : x  = penghapus y  = harga
 x₁ = 7                                    y₁ = 14.000
 x₂ = 13                                  y₂ = 38.000

m = 24.000 = 4.000
                                            6
                                y - y₁ = m (x - x₁)
                                y – 14.000 = 4.000 (x – 7)
                                y = 4.000x – 28.000 + 14.000
                                y = 4.000x – 14.000
                                25 penghapus    = 4.000 (25) – 14.000
                                                                = 100.000 – 14.000
                                                                = 86.000

  1. Tentukan persamaan garis yang melalui titik M (4, -2) dan N (-2, 8)
Jawab : m = y₂ - y₁
                         x₂ - x₁
                 m = 8 + 2  = 10    
                         -2 - 4     -6
                 y – y₁ = m (x - x₁)
                 y + 2) = -10/6 (x – 4)
                 y = -10/6x + 40/6 - 2
                 y = -10/6x + 28/6
                6y = -10x + 28
                10x – 28 = 0
                10x = 28
                    x = 28/10                          y = 28/6
                    x = 0,28                             y = 4,67

  1. Harga 17 penggaris Rp. 32.000,- dan harga 9 penggaris Rp. 20.000,-. Berapakah harga 5 penggaris ?
Jawab : x  = penggaris                    y  = harga
 x₁ = 17                                  y₁ = 32.000
 x₂ = 9                                    y₂ = 20.000

m = - 12.000 = 1.500
                                            - 8
                                y - y₁ = m (x - x₁)
                                y – 32.000 = 1.500 (x – 17)
                                y = 1.500x – 25.500 + 32.000
                                y = 1.500x + 6.500
                                8 buku = 1.500 (5) + 6.500
                                                 = 7.500 + 6.500
                                                 = 14.000

33.   Persamaan garis melalui titik D (-4, 2) sejajar dengan 3x + 4y +2 = 0 adalah …..
Jawab : 3x + 4y + 2 = 0
                   4y = -3x – 2
                     y = -3/4 x – ½
                m₁ = m₂
                m₁,₂ = -3/4
                                y - y₁ = m (x - x₁)
                                y - 2 = -3/4 (x + 4)
                                y -2 = -3/4x – 3
                                   y   = -3/4x – 3 + 2
                                   y   = -3/4x - 1

34.   Persamaan garis melalui titik F (6, -3) dan tegak lurus dengan garis 2x + 4y + 2 = 0 adalah…
Jawab : m₁ = -a = -2 = -1/2
                         b      4
                m₁ . m₂ = -1
                -1/2 . m₂ = -1
                          m₂ = 2
                                y - y₁ = m (x - x₁)
                                y + 3 = 2 (x - 6)
                                y + 3 = 2x – 12
                                      y = 2x – 12 – 3
                                      y = 2x - 15
                               
35.   Persamaan garis yang melalui titik (2, -3) dan tegak lurus dengan garis 2x – y + 4 = 0 adalah....
Jawab : m₁ = -a = -2 = 2
                         b     -1
                m₁ . m₂ = -1
                2 . m₂ = -1
                          m₂ = -1/2
                                y - y₁ = m (x - x₁)
                                y + 3 = -1/2 (x - 2)
                                y + 3 = -1/2x + 1
                                      y = -1/2x + 1 - 3
                                      y = -1/2x - 2



Tidak ada komentar:

Posting Komentar